The neuroscience of mammalian associative learning.

نویسندگان

  • Michael S Fanselow
  • Andrew M Poulos
چکیده

Mammalian associative learning is organized into separate anatomically defined functional systems. We illustrate the organization of two of these systems, Pavlovian fear conditioning and Pavlovian eyeblink conditioning, by describing studies using mutant mice, brain stimulation and recording, brain lesions and direct pharmacological manipulations of specific brain regions. The amygdala serves as the neuroanatomical hub of the former, whereas the cerebellum is the hub of the latter. Pathways that carry information about signals for biologically important events arrive at these hubs by circuitry that depends on stimulus modality and complexity. Within the amygdala and cerebellum, neural plasticity occurs because of convergence of these stimuli and the biologically important information they predict. This neural plasticity is the physical basis of associative memory formation, and although the intracellular mechanisms of plasticity within these structures share some similarities, they differ significantly. The last Annual Review of Psychology article to specifically tackle the question of mammalian associative learning ( Lavond et al. 1993 ) persuasively argued that identifiable "essential" circuits encode memories formed during associative learning. The next dozen years saw breathtaking progress not only in detailing those essential circuits but also in identifying the essential processes occurring at the synapses (e.g., Bi & Poo 2001, Martinez & Derrick 1996 ) and within the neurons (e.g., Malinow & Malenka 2002, Murthy & De Camilli 2003 ) that make up those circuits. In this chapter, we describe the orientation that the neuroscience of learning has taken and review some of the progress made within that orientation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experience modifies olfactory acuity: acetylcholine-dependent learning decreases behavioral generalization between similar odorants.

Perceptual learning has been demonstrated in several thalamocortical sensory systems wherein experience enhances sensory acuity for trained stimuli. This perceptual learning is believed to be dependent on changes in sensory cortical receptive fields. Sensory experience and learning also modifies receptive fields and neural response patterns in the mammalian olfactory system; however, to date th...

متن کامل

Associative learning and memory duration of Trichogramma brassicae

Learning ability and memory duration are two inseparable factors which can increase theefficiency of a living organism during its lifetime. Trichgramma brassice Bezdenko (Hym.:Trichogrammatidae) is a biological control agent widely used against different pest species.This research was conducted to study the olfactory associative learning ability and memoryduration of T. brassicae under laborato...

متن کامل

A critical time window for the recruitment of bulbar newborn neurons by olfactory discrimination learning.

In the mammalian brain, the dentate gyrus and the olfactory bulb are regions where new neurons are continuously added. While the functional consequences of continuous hippocampal neurogenesis have been extensively studied, the role of olfactory adult-born neurons remains elusive. In particular, the involvement of these newborn neurons in odor processing is still a matter of debate. We demonstra...

متن کامل

Cannabinoids Potentiate Emotional Learning Plasticity in Neurons of the Medial Prefrontal Cortex through Basolateral Amygdala Inputs.

Cannabinoids represent one of the most commonly used hallucinogenic drug classes. In addition, cannabis use is a primary risk factor for schizophrenia in susceptible individuals and can potently modulate the emotional salience of sensory stimuli. We report that systemic activation or blockade of cannabinoid CB1 receptors modulates emotional associative learning and memory formation in a subpopu...

متن کامل

Molecular physiology of the neural circuit for calcineurin-dependent associative learning in Caenorhabditis elegans.

How learning and memory is controlled at the neural circuit level is a fundamental question in neuroscience. However, molecular and cellular dissection of the neural circuits underlying learning and memory is extremely complicated in higher animals. Here, we report a simple neural circuit for learning behavior in Caenorhabditis elegans, where the calcium-activated phosphatase, calcineurin, acts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of psychology

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2005